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Chapter 1

Introduction

Prostate cancer (PCa) is one of the most common types of cancer among men. In Ireland,
around 1 in 7 men will be diagnosed with prostate cancer in their lifetime [Prostate
cancer 2021]. However, prostate cancer can be treated with active surveillance and
appropriate treatment. It also has one of the highest survival rates among all cancers
(>90%) [Prostate Cancer 2019; Siegel, Miller, and Jemal 2016]. There are several studies
done on diagnosing prostate cancer [Prostate Cancer Treatment 2021; Eichler et al. 2006;
Madu, and Lu 2010]. The Prostate-Specific Antigen (PSA) level is widely considered
to be a key clinical biomarker. An elevated PSA level or an abnormal Digital Rectal
Examination (DRE) may be an indicator of prostate cancer [Mohler et al. 2010]. A PSA
value of 4 ng/mL or less is considered to be normal; but in fact there is no PSA level
below which cancer has not been detected [Mohler et al. 2010]. This issue highlights
the need to have more biomarkers which are reliable and can be measured without a
biopsy.

However, a definitive diagnosis requires biopsies, where a small sample of tissue is
extracted from the prostate and is examined. The pathologist then assigns a primary
and secondary Gleason grade to the biopsy specimen. The Pathological Grade of a
tumour which is based on the Gleason scoring system, can assume values from 6 to
10, where the former is a low grade cancer and the latter is a high grade cancer. It is
measured based on information found during surgery and the laboratory results of the
prostate tissue which is removed during surgery [Prostate Cancer - Stages and Grades
2021].

This study will focus on developing methods to predict the Pathological Grade of
the tumour without requiring surgery. We will also identify suitable biomarkers which
may be used to predict the Pathological Grade of the Prostate Cancer.

1.1 Objective

The objective of this work is two-fold. First, we are going to develop a robust framework
for predicting the Pathological Grade of the tumour for men diagnosed with prostate
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cancer. Secondly, we shall also be interpreting the same models to give us information
on appropriate biomarkers. This involves using the MSKCC Prostate Cancer dataset to
carry out our analysis. This dataset will be discussed in detail in the following sections.

1.2 Prostate Cancer

The prostate is a gland that is a part of the male reproductive system. It lies in front
of the rectum and below the bladder and is about the size of a walnut. This gland is
responsible for secreting fluid that becomes a part of semen. [Prostate Cancer Treatment
2021].

Pubic bone /) ’ , Seminal vesicle
Prostate \ // Harr
N
Urethra ‘ y
‘ Pelvic floor muscles
Penis e
. . Vas deferens
Testis
Scrotum
|

Figure 1.1: Anatomy of the prostate. [Prostate cancer 2021]

The type of cancer where malignant cells form in the tissues of the prostate is called
prostate cancer. They grow in an abnormal way to form a tumour inside the prostate. In
some men, the tumour grows slowly and in others the tumour grows faster and can also
spread to other parts of the body.

There are several common symptoms of prostate cancer and are listed below
[Prostate Cancer Treatment 2021].

* Facing issues when urinating.

* Sudden urges to urinate.

e Frequent urination.

* Discomfort during urination.

* Blood in urine or semen

e Chronic pain in the back, hips or pelvis.

» Shortness of breath, fatigue, fast heartbeat, dizziness or pale skin caused by
anemia.



1.3 MSKCC PROSTATE CANCER DATASET 3

Seminal
vesicle

Prostate

Cancerous

\ A& tumor
N >Scrotum

—

Figure 1.2: Prostate cancer Illustrated.
[What Is Prostate Cancer? 2019].

The Pathological Grade of the prostate cancer tumour is determined during surgery
using the Gleason Scoring System. The Gleason Scoring System named after Dr. Donald
Gleason who developed it in the 1960s, is used to grade cells on a scale from 1 to 5. Grade
1 cells look like normal prostate tissue. Cells higher than 1 and close to 5 are cancerous
cells that do not resemble prostate tissue. The pathologist assessing the tissue sample
assigns one Gleason grade to the most predominant pattern and a second Gleason
grade to the closest following pattern. The two grades are then added together to give
a score out of 10 [Gleason Score and Grade Group 2021]. However, to be noted is that
pathologists never assign scores from 2 to 5 and hence, assigned Gleason scores will
always range from 6 to 10. This means that cancers with Gleason score 6 is low grade, 7
is intermediate and higher than 7 is a high grade cancer.

1.3 MSKCC Prostate Cancer Dataset

The MSKCC Prostate Cancer Dataset consists of 232 entries of men diagnosed with
prostate cancer. Each sample in the data is described by 39 different features out of
which 9 key features are described below.

1. Type: The Sample Type, can assume one of two levels, Primary or Metastasis.
2. PreDxBxPSA: This indicates the PSA level recorded at diagnosis in ng/mL.

3. DxAge: The age of the patient (in years) at diagnosis.



1.3 MSKCC PROSTATE CANCER DATASET 4

10.

Race: The race of the patient from one of the following. Black Non-Hispanic,
White Non-Hispanic, Black Hispanic, Unknown, Asian, White Hispanic.

BxGG1, BxGG2 and BxGGS: The primary, secondary and combined Gleason
Scores recorded during biopsy.

ClinT_Stage: This is the Clinical Tumour Stage recorded during biopsy using the
TNM Staging system [Prostate Cancer - Stages and Grades 2021].

RP_Type: This refers to the type of Radical Prostatectomy surgery to be con-
ducted, Retropubic Prostatectomy, Salvage Prostatectomy or Laparoscopic Prosta-
tectomy.

Copy-Number Cluster Assignment: This feature encapsulates information from
mRNA data and is grouped into 7 categories.

ERG-fusion aCGH: This stands for the ETS-related gene (ERG) fusion status de-
termined by copy-number. This is another feature that considers genetic infor-
mation.

PathGGS: The Pathological Grade of the tumour. Assumes values from 6 (low-
grade cancer) to 10 (very-high grade cancer).



Chapter 2

Machine Learning Methods and
Evaluation Metrics

Machine learning (ML) refers to a class of techniques that rely on data to learn patterns
and make predictions. We define a model with some parameters and then optimise the
parameters by feeding it past data. This is defined as 'training’ the model. The model
may be 'predictive’, one that makes predictions in the future, or 'descriptive’, one that
describes knowledge present in the data, or both. [Alpaydin 2020].

Machine learning has grown immensely in the last few decades from a prospective
technology to ubiquitous commercial use. It has become the preferred method of
choice for developing a wide range of solutions, including but not limited to natural
language processing, computer vision, robot control, fraud detection systems, etc.
[Jordan, and Mitchell 2015]. Most ML methods as built to solve function approximation
problems; where the task is represented through a function (e.g., prostate cancer or not
prostate cancer) and the challenge is to learn parameters to best approximate solving
this problem. Given input and output pairs of data that are labelled as cancer or not,
the algorithm must find appropriate parameters via an optimisation procedure. In this
age of big data, we have access to huge volumes of data that make this training process
easier and the use of ML methods readily available.

The medical field has also greatly benefitted from ML methods. It is not uncommon
to have models trained on millions of patient data stored in Electronic Health Records
(EHRs) with billions of data points to assist doctors in their medical practices. On the
other hand, it is very difficult for a human physician to see more than tens of thousands
of patients in their entire career. Since an ML model can learn the patterns in the health
trajectories of millions of patients, they are immensely beneficial in prognosis. They can
provide insight well beyond the physician’s practical experience using vast amounts of
data. Large integrated systems are already using machine learning to identify patients at
risk and transfer them to an Intensive Care Unit (ICU) [Escobar et al. 2016]. The risk of
disease varies from patient to patient but only the best doctors can accurately diagnose
a disease by observing minute changes from a patient’s medical report. If there is an
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observable pattern that describes the likely onset of a disease, it is an apt problem to be
solved by machine learning. These models could help diagnose illnesses that may not
occur routinely during the physician’s practice. According to a report by the Institute of
Medicine, a diagnostic error will occur in the case of nearly every individual patient in
their lifetime [McGlynn, McDonald, and Cassel 2015]. In most cases, receiving the right
treatment after diagnosis may be a case between life and death.

2.1 Machine Learning Methods

For the purposes of this study, we will focus on four commonly used Machine learning
methods. They are,

1. Logistic Regression
2. Random Forest
3. Support Vector Machine

4. Neural Networks

2.1.1 Logistic Regression

Logistic Regression is a method for modelling the probability of a discrete outcome (e.g.
Yes/No) given an input variable. The most common logistic regression models a binary
outcome, however, multinomial models are capable of modelling multiple outcomes
[Edgar, and Manz 2017]. It is a simple and very efficient method for classification
problems. Logistic Regression is extensively applied for various problems in the industry
due to its simplicity and high interpretability.

Logistic regression will model the probability of an outcome based on the predictor
variables. The equation is given below,

log(ﬁ) =Po+ Prx1+ Pox2+ ..+ BmXm

where p denotes the probability of the event (e.g., having prostate cancer) and §; are
the regression coefficients associated with the explanatory variables [Sperandei 2014].
The [ og(%) term is referred to as the logit (log-odds). The variables x; stand for the
explanatory variables used to predict the response. In the case of categorical features,
‘dummy’ variables may be used in the model. To create dummy variables for a particular
feature, one of the levels is used as the reference category and the feature is split into
k-1 features (where k is the number of levels that feature can assume). Each dummy
variable then assumes 0 or 1 depending on the value of the original categorical feature.
We will be creating dummy variables for our analysis while using the logistic regression
model.
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Logistic regression falls into a larger family of techniques called Generalised Linear
Models (GLMs) which can model many different probability distributions. They are
called ‘linear’ as the function of the outcome is modelled using linear predictors, such
as the log odds. The following is the structure of the Generalised Linear Model,

Random Component : y;|x; ~Exponential Family Density (2.1)

Stochastic Component : log(%) =Bo+Pr1x1+ Paxo+ ...+ BmXm 2.2)

2.1.2 Random Forest

Random Forest is a machine learning technique that can be applied to classification or
regression problems [Breiman 2001]. This ensemble learning technique is comprised of
many smaller prediction models called Decision Trees which uses rule-based learning
to deliver predictions [James et al. 2013]. Random Forest uses the concept of bagging
or bootstrap aggregating. It is where the training data is randomly sampled with re-
placement, which results in around 66% of the original data [James et al. 2013]. Due
to bootstrapping, every decision tree gets a different subset of the training data and is
hence unique. Once every decision tree is trained, they cast a vote for classifying an
unseen sample and the list of proportions of votes received is treated as a probability
vector. The unseen sample is then classified in to the group with the highest probability.
The key difference between Random Forests and other bagged methods is that every
decision tree being trained gets a randomly selected subset of the predictors referred
to as myy. This makes individual tree-building more efficient as we do not use all the
predictors but only a small subset of it. For classification problems, Breiman [2001]
recommends to keep m, to the square root of the number of predictors.

» D, #»{ Decision tree | » Result 1
A 4
o - Vote for
D | Randomize » D, | Decision tree 2 P Result 2
the best
F 3
o000 (N N
» Dy | Decision tree K > Result K

Figure 2.1: Example of a Random Forest. Credits: Ren, Mingchao Li, and S. Han
[2019].

The Random Forest, just like its constituent Decision Tree is agnostic to the scale of
the data. Hence, there is minimal preparation required before training. Due to its nature
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as a rule based learning model, it also has feature importance built in. Random Forests
have been proven to yield very good results on a range of different classification and
regression tasks. Hence, we shall be using this method on our prostate cancer dataset to
predict the pathological grade.

2.1.3 Support Vector Machine

Support Vector Machine (SVM) is a technique used in binary classification and regres-
sion tasks [James et al. 2013]. It uses the concept of a ‘Discriminating Hyperplane’ to
perform classification. In a p-dimensional space, a hyperplane is a flat subspace of
dimension p — 1 that divides the space into two parts. Given a two-class problem with a
number of sample points, this hyperplane is used to discriminate between points on
either side of it and is hence called the Discriminating Hyperplane. If the two classes can
be perfectly separated by a hyperplane, there could be an infinite number of possible
hyperplanes. If the two classes are not separable, it is impossible to build a separator
that can perfectly distinguish the two. Hence, SVMs introduce the concept of a ‘soft
margin.

\\ Dividing hyperplane
& Lypery

Figure 2.2: Example of an SVM. Credits: Carrasco [2019].

After allowing a soft margin, the SVM allows some samples to be incorrectly classified
while trying to get most of the samples on the correct side. This is done by solving the
following optimisation problem,

max M (2.3)
ﬁo,ﬁl,...,ﬁp,fl,...,en,M
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p
subject toj;ﬁi =1, (2.4)
Yi(Bo + Brxi1+ Paxiz+ -+ Ppxip) = M(1 —€;) (2.5)
n
=0,) =C (2.6)
i=1

M is the width of the margin and we wish to make this parameter as large as possible.
We do this because the data points nearest to the margin are difficult for the model to
categorise and we wish to keep them as far from the margin as possible. The variables
€1,-++,€y, are called as slack variables which let some samples be misclassified. Equation-
2.5 is used to classify the test observation based on the sign of f(x*) = o + f1x] +
Ppx,, James et al. 2013].

2.1.4 Neural Networks

Neural Networks are a class of algorithms capable of classification or regression. For the
scope of this work, we shall be focusing on a particular type of neural network called
the Multi-layer Perceptron (MLP) Classifier. The MLP is a kind of feed-forward neural
network. It mainly consists of three parts, the input layer, the hidden layer, and the
output layer [Abirami, and Chitra 2020]. The input layer receives the training data to be
processed.

Hidden layers

NN
.,.a n,.

m

Input Iayer

Output layer

X m

Error backpropagation

Figure 2.3: Example of an MLP. Credits: Fernandez-Caban, Masters, and Phillips
[2018]

The number of input neurons depends on the number of input variables. Various
computations are conducted in the hidden layer by introducing non-linear activation
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functions that transform the data. The simplest network will be to have a single neuron
in the hidden layer with no activation function. Finally, the output layer is responsible
for conducting the classification or regression task. The number of neurons in the final
layer depends on the task at hand; a single neuron is preferred in classification tasks
whereas the modeller might choose to have multiple outputs. The choice of activation
function is also dependent on the problem to be solved. For a classification problem, the
sigmoid activation function (Equation-2.7) may be used. This function outputs a value
between 0 and 1, which is used to represent the probability for the test sample belonging
to a particular class. The classification is done by selecting a threshold between 0 and 1.
For regression problems, a single neuron may be considered with no activation function.
In the case of a multi-class classification problem, multiple outputs may be considered
alongside the use of the softmax activation function (Equation-2.8).

o(x) = (2.7)

l1+e™*
Xi

s(xi) = =5— (2.8)

Yy el
A strength of the MLP model is being able to set multiple hidden layers between the
input and the output layer, which form the heart of the model [Abirami, and Chitra 2020].
Deep Neural Network is a term used to describe networks with a lot of hidden layers.
Nowadays, with advances in computing technology;, it is possible to train networks with

hundreds of layers.

2.2 Resampling Methods

Even in this age of big data, obtaining quality data is expensive. Data is what makes
applied machine learning possible and hence each data point must be spent wisely.
Resampling methods are used to draw samples from observed data to draw certain
conclusions. A single measurement from a statistical learning algorithm is not reliable
and we would like to obtain multiple measurements and observe the range. They are a
way to effectively use our data to improve the estimate of the population parameter and
measure uncertainties of the estimate [Good 2006]. Two popular resampling techniques
we will discuss are the Bootstrap and Cross Validation.

2.2.1 The Bootstrap

The Bootstrap is a powerful and widely used statistical tool used for estimating the
uncertainty associated with an estimator or statistical learning algorithm [James et al.
2013]. It can be used with a wide range of ML methods, even in those where a measure
of the range of variability can be difficult to obtain. This method is used when the target
population is unknown and the data is the only available information. The general
algorithm is given as follows,
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Given an initial sample Xj, ..., X;;, assuming we want to estimate parameter 0,

Algorithm 1 Bootstrapping pseudocode

1: forb=1,...,Bdo
2 Draw a sample X*) from Xwith replacement
3 Evaluate the estimate ) from X*®)
4
5

: end for
: Deduce the bootstrap estimate of Fj as the empirical distribution of

replicates 1V, ...,0P

The distribution of these statistics (e.g. The estimate 6")) is called the Boostrap
distribution. This distribution gives us information about the shape, measure of central
tendency and spread of the sampling distribution of the statistic.

2.2.2 Cross Validation

Cross Validation (CV) is a very commonly used resampling method to estimate the
performance of a statistical learning method [Arlot, and Celisse 2010]. In machine
learning, it is used when the data is limited and we need to evaluate model performance
on unseen data. We will discuss two types of cross validation procedures used in this
study, k-Fold CV and Nested k-Fold CV.

k-Fold Cross Validation

In this type of Cross Validation, the dataset is shuffled and divided into k different parts,
or folds, of the same size. The first fold is treated as a test set and the method is fitted
on the remaining k — 1 folds. An estimate of performance such as the error rate (¢) is
measured on the test set and recorded.

This is repeated k times, every time a different fold is used for evaluating the model
performance. This process yields k estimates of test error, €1,€5,...,€x. Figure-2.4
illustrates the procedure. The k-Fold CV estimate is calculated as follows,

1 k
CViy = = Y e 2.9)
i=1

Nested k-Fold Cross Validation

Using the k-Fold Cross Validation technique is an effective way to evaluate the perfor-
mance of a machine learning model. However, when we are trying to optimise the set of
parameters used to train a machine learning model, we have to run it multiple times
on the same data. This is a prime cause for overfitting and may lead to optimistically
biased results [Cawley, and Talbot 2010]. Nested k-Fold Cross Validation (Nested CV)
helps overcome this issue.
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Figure 2.4: 5-Fold CV Illustrated. Credits: [James et al. 2013]

In this technique, model hyperparameter optimisation is treated as part of the
model itself and is conducted within a broader k-Fold Cross Validation for evaluating
the performance of a model. In other words, hyperparameter optimisation is conducted
using a k-Fold Cross Validation procedure which is nested inside another k-Fold Cross
Validation procedure conducted for model selection. This is why the technique is
called Nested k-Fold Cross Validation or Double Cross Validation and is the preferred
technique for model comparison and selection [Cawley, and Talbot 2010].

2.3 Evaluation Metrics

Data preparation, model hyperparameter tuning and even model selection are processes
that are guided by the evaluation metric. It acts as a measure of performance which
is used to make important decisions while modelling a problem. Evaluation metrics
make certain assumptions about what is important in the problem and must be chosen
carefully according to it. For e.g., for an imbalanced binary classification problem, using
accuracy as the evaluation metric may be highly misleading [Branco, Torgo, and Ribeiro
2015]. Depending on how skewed the data is, simply predicting a single class may give a
very high estimate of performance. We will discuss two commonly used performance
metrics, Accuracy and Receiver operating characteristic Area Under Curve (ROC AUC).

2.3.1 Accuracy

Perhaps the commonly used performance metric in classification problems, the accu-
racy score gives the fraction of total number of correct predictions by the total number
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of predictions. As given in equation,

Number of Correct Classifications
Accuracy = - - (2.10)
Total Number of Classifications

2.3.2 Receiver Operating Characteristic Area Under Curve

The ROC curve is a diagnostic plot used to visualise a binary classifier’s ability to dis-
criminate between two classes. Some models output their test predictions in the form
of a probability of belonging to class A or B. By varying the classification threshold, we
are able to measure the performance of the model under different thresholds. Each
threshold is a point on the plot which forms a diagonal line indicating a model with no
discriminatory ability. The results are then plotted to form a curve with the X-axis being
the False Positive Rate and the Y-axis being the True Positive Rate.

ROC Curve

True positive rate

= ROC Curve 1 (AUC = 0.96;
ROC Curve 2 (AUC = 0.74
ROC Curve 3 (AUC = 0.99

} == Random Classifier

0o == Perfect Classifier

00 02 04 06 08 10
False positive rate

Figure 2.5: Example of the ROC Curve. Credits: A. Kumar [2020]

The Area under the curve can be calculated to give a single metric to summarize the
performance of the classifier. The value is called as the ROC AUC.

According to literature [Hajian-Tilaki 2013; Barlow, Mao, and Khushi 2019; R. Kumar,
and Indrayan 2011], the ROC AUC is a popularly used metric in the medical field for
its proven ability in diagnostic test evaluation. Hence, in this study, this will be the
preferred metric to compare models.
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2.4 Feature Selection

Feature Selection is the process of choosing a subset of features to be used in predictive
modelling. It is helpful in several aspects such as reducing computation requirement,
reducing the effect of curse of dimensionality, improving predictive performance etc.
[Chandrashekar, and Sahin 2014]. We will discuss two types of Feature Selection strate-
gies, Univariate Feature Selection and Recursive Feature Elimination (RFE).

2.4.1 Univariate Feature Selection

Univariate Feature Selection is used to describe methods that use univariate statistical
tests to select features. It is a Filter method, where the relevance of a feature is measured
by their correlation with the response variable. In this work, we shall use the ANOVA
F-test for numeric features and the Chi-Square Test for categorical features.

ANOVA F-test

The ANOVA F-test is used to test if the means of several groups differ from each other.
The formula for the one-way ANOVA F-statistic is given by,

X Y- DPIK -1
T X (Y = Y2 (N - K)

(2.11)

The numerator is referred to as the Explained Variance and the denominator is called the
Unexplained Variance. ¥; denotes the sample mean in the i’" group, n; is the number
of samples in the i’ group, ¥ is the mean of the whole data and N and K denote the
sample size and number of groups respectively. The F-Statistic follows the F-distribution
with degrees of freedom d; = K —1 and d» = N — K under the null hypothesis.

Chi-Squared Test

The Chi-Squared test is used to test if the observed frequencies for a given categorical
variable match the expected frequencies for the second categorical variable. The formula
is given by,
0; — E))?
X2 = Z (Oi — Ey)” (2.12)
E;

Here, O; denotes the observed value of the i;;, observation and E; refers to the expected
value of the i, observation. So in our case, O; is the categorical predictor and E; is the

response variable. The test statistic here follows a Chi-square distribution.

2.4.2 Recursive Feature Elimination

Recursive Feature Elimination (RFE) is Wrapper method which uses the feature im-
portance metric of the machine learning method to select features. Initially, a model
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is fitted with all p predictors and a measure of feature importance is measured that
ranks the predictors. The least important feature in this list is then eliminated and the
procedure is repeated again with p — 1 predictors. This procedure can be continued
till a certain minimum threshold of predictors are remaining. Amongst all these fitted
models, the best performing model is selected as the final model.



Chapter 3

Exploratory Data Analysis and
Modelling

3.1 Data Cleaning

In order to create a quality analysis, it is imperative that we wrangle the data appro-
priately. This includes dealing with missing values, checking for outliers, etc. The
MSKCC Prostate Cancer dataset has similar issues which need to be dealt with. De-
tailed below is the list of steps taken to clean the data and make it usable for our research.

¢ The features NeoAdjRadTx (Neoadjuvant therapy), MetSite (Site of the metasta-
sis), ChemoTx (Chemotherapy), HormTx (Hormonal therapy) and RadTxType
(Radiation) are removed for having a high number of missing values. (>70%
Missing values)

e SamplelD is dropped since it does not contribute any information.

¢ The features PathGG1 (Primary Pathological Gleason Score) and PathGG2 (Sec-
ondary Pathological Gleason Score) are removed for having a linear dependency
with the response variable PathGGS. PreRPPSA (PSA value before RP in ng/mL)
is removed for having a high correlation with PreDxBxPSA (PSA value before
diagnosis) and because it is measured just before the RP surgery.

* All nomogram features are removed for having many missing values.
¢ All the following features that are measured after the RP surgery are removed.

BCR_FreeTime (Time until Biochemical recurrence)

BCR_Event (Recurrence Event)

PathStage (Pathological Tumour Stage)
Event (Death)
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SurvTime (Overall Survival Time)

SMS (Surgical margin status)

ECE (Extra-capsular extension)

SVI (Seminal vesicle invasion)

LNI (Lymph node involvement)

As is evident, the data has been reduced considerably from 39 features to 10 features.
The reasons for which features were dropped from the dataset here come under 2
categories, missing values and if they were recorded during or after the surgery. This
being a relatively small dataset, we would like to drop the fewest number of samples
necessary. Some features were dropped because chronologically they are recorded after
the point when PathGGS is recorded which makes them redundant.

3.2 Data Exploration

Now that the data has been cleaned, we shall begin the first step of our data analysis
by exploring the data. The first step of the modelling process is to understand some
important characteristics of the data such as the distributions of the predictors, unusual
values within predictors, relationships between predictors, and finally the relationship
between each predictor and the response variable. We shall explore each predictor
variable in the following sub-sections.

Table 3.1 and Table 3.2 illustrate the summary statistics of the cleaned datatset.

PreDxBxPSA | DxAge BxGG1 BxGG2 PathGGS
count | 190.000000 190.000000 | 190.000000 | 190.000000 | 190.000000
mean | 15.414737 58.227971 | 3.236842 3.373684 6.984211
std 54.468362 6.695967 0.450409 0.584040 0.838721

min 0.200000 37.295800 | 3.000000 2.000000 6.000000
25% 4.500000 53.365270 | 3.000000 3.000000 6.000000
50% 6.100000 58.299675 | 3.000000 3.000000 7.000000
75% 9.200000 63.316210 | 3.000000 4.000000 7.000000

max | 506.000000 72.770890 | 5.000000 5.000000 9.000000

Table 3.1: Summary statistics of numeric predictors in the dataset.

3.2.1 Exploring Numeric Predictors

Let us take a deep dive into the distribution of the numeric predictors.
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Distribution of PSA level at diagnosis (ng/mL)

Count

20

10

0 11 1 1 1 I
T T T T T
0 100 200 300 400 500
PreDxBxPSA

Boxplot of PSA level before diagnosis and PathGGS

500 ¢
400 A
< 300 A
wv
o
>
2]
>
3 '
a 200 1
L
100 - N
. —
6 7 8 9
PathGGS

Figure 3.1: PSA level - Histogram and Boxplot with the response.
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Feature Unique Values
Type "PRIMARY’, 'MET’
"Black Non-Hispanic’, "White Non-Hispanic’, 'Black
Race . S A s . . .
Hispanic’, 'Unknown’, ’Asian’, "White Hispanic
ClinT_Stage 'T2A, 'T1C’, 'T2B’, 'T2C’, "T3A, 'T3’, 'T3B’, 'T2’,'T3C’
RP_Type 'RP’,’SALVRP’, 'LP’
Copy-number Cluster | '1’,'2’,’3’,’4’,’5’,’6, "flat’
ERG-fusion aCGH 'negative’ 'positive’ 'flat’

Table 3.2: Summary statistics of categorical predictors in the dataset.

PreDxBxPSA (PSA level at diagnosis)

According to studies, a PSA level of over 4 ng/mL is considered to be abnormal and
warrants further study [Prostate-Specific Antigen (PSA) Test 2021]. We can observe in
Figure-3.1 that most of the patients had PSA values under 10 ng/mL. However, here we
can see some values much higher than 4, upto 500 ng/mL. The boxplot tells us that the
median PSA level steadily increases as the Pathological Grade increases. Hence, we infer
that a higher PSA level may indicate an aggressive tumour.

DxAge (Age at diagnosis)

Age appears sufficiently normally distributed. Most men in this dataset are aged around
58, which may indicate that they are at the highest risk of having prostate cancer. From
Figure-3.2, we can observe the rising median values of Age as the Pathological Grade
increases. We infer that older men tend to be diagnosed with a tumour of a higher grade.

BxGG1 and BxGG2

Here we shall look at the two grades that are assigned to a patient and that represent the
Gleason Score during biopsy. Prostate tumours are often constituted of cancerous cells
of different grades. A primary grade is assigned to describe the cells of the largest area of
the tumour and a secondary grade is assigned to the second largest area [Gleason Score
n.d.] For the primary biopsy gleason grade, most men have been assigned a 3 and the
higher the grade, the lower the number of patients. Regarding the secondary biopsy
gleason grade, there is a similar trend but with a small minority having been assigned a
2. When comparing the Biopsy Gleason Grades with Pathological Gleason Grades, we
observe a general trend of positive correlation. As the Biopsy Gleason Grade increases,
so does the Pathological Gleason Grade.

3.2.2 Exploring Categorical Predictors

Here we shall explore the predictors Sample Type, Race, Clinical Tumour Stage, Type of
Radical Prostatectomy, Copy-Number Cluster Assignment and the ERG fusion status
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Distribution of Age at diagnosis (years)
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Figure 3.2: Age -Histogram and Boxplot with the response.
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Distribution of BxGG1 (Primary Biopsy Gleason Score) Distribution of BxGG2 (Secondary Biopsy Gleason Score)
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Figure 3.3: Histogram of BxGG1 and BxGG2
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determined by copy-number. We shall plot the distribution of the variables.

Sample Type

Count Plot for Type

PRIMARY

Type

Figure 3.4: Count Plot of Sample Type

The predictor Sample Type describes whether the tumour is the first tumour in the
body (Primary) or a cancer that spread to other parts of the body and formed a secondary
tumour (Metastasis) [NCI Dictionary of Cancer Terms n.d.] Here most samples are of
Primary type and the minority is Metastasis. Due to the small size of the dataset, we
have not explored techniques to balance the samples by under or over sampling.

Race

This predictor tells us the race of the patient. We see a majority of White non-Hispanic
patients followed by Black non-Hispanic and others.

Clinical Tumour Stage

In this barplot, we can observe the distribution of Clinical Tumour Stage of the patients.
There are 4 main stages of cancer size in prostate cancer and each stage is divided into
multiple subdivisions, e.g. T1A, T2B etc. [TNM Staging 2019]. T1C is the most common
clinical stage followed by the others.

Type of Radical Prostatectomy

Radical Prostatectomy refers to the surgery conducted to remove the prostate and the
surrounding tissues. The three types of Radical Prostatectomy here are Retropubic
Prostatectomy, Salvage Prostatectomy and Laparoscopic Prostatectomy. Most surgeries
conducted are of type Retropubic Prostatectomy. This may due to the fact that most
tumours here are of Primary type, as observed for the predictor Sample Type.
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Count Plot for Race
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Figure 3.6: Count Plot of Clinical Tumour Stage
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Count Plot for RP_Type
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Figure 3.7: Count Plot of Radical Prostatectomy Type

Copy-Number Cluster Assignment

Count Plot for Copy-number Cluster
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Figure 3.8: Count Plot of Copy Number Cluster Assignment

The Copy-Number Cluster Assignment refers to 7 different categories into which the
Copy-number as been grouped into. Copy-number variation refers to a phenomenon
observed in the genome. We see a uniform spread of all cluster assignments.

ERG fusion status determined by copy-number

ERG (ETS-related gene) is an oncogene that has become highly associated with prostate
cancer in the last decade [Adamo, and Ladomery 2015]. This predictor describes the
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Count Plot for ERG-fusion aCGH

count
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Figure 3.9: Count Plot of ERG fusion status

fusion status determined by the copy number. Most samples are negative followed by
positive, and finally the least samples are flat.

3.2.3 Exploring the Response

The response variable PathGGS has 4 levels. Starting from a gleason score of 6 which
indicates an low grade tumour to a gleason score of 9 which is a high grade tumour.
Due to the apparent imbalance in classes and support from literature [Understanding
Your Pathology Report: Prostate Cancer 2017], we shall be combining the classes ’7’,
'8’ and '9’ into '7+” which indicates an aggressive disease. Henceforth, our new binary
classification task is to predict an indolent cancer (Gleason Score 6) or an aggressive
cancer (Gleason Score 7+).

3.3 Feature Selection

Feature selection techniques are commonly used as a pre-processsing step to model
building. A model with fewer predictors may be more interpretable and less costly to
build. In this chapter we will explore two feature selection strategies, Univariate Feature
Selection and Recursive Feature Elimination (RFE).

3.3.1 Univariate Feature Selection

We shall be using 2 tests to filter predictors to include in our models. For Continuous
Features we have used the ANOVA F-value for selecting features. For categorical features
we have used the Chi-Squared Test. If the test statistic is deemed statistically significant
(p-value <= 0.05), the predictors are included in the model.
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Count Plot for PathGGS
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Figure 3.10: Count Plot of Pathological Grade Gleason Score

Count Plot for PathGGS (After Combining)
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Figure 3.11: Count Plot of Pathological Grade Gleason Score (After combining)
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Numeric Predictors
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0.12 -

[=]
ot
(=]

o
o
@

0.06 -

Importance (p-value)

0.04 4

0.02 1

000 - T T
PreDxBxPSA DxAge BxGG1 BxGG2

Feature

Figure 3.12: Barplot of ANOVA F-test p-values for each numeric predictor. The
red line denotes the cut-off at 5%.

Out of the 4 numeric predictors, 3 are selected. Age, Biopsy Gleason Grade 1 and
Biopsy Gleason Grade 2 are deemed to be statistically significant and shall be included
in our model.

Categorical Predictors

Given in Figure-3.13, only one predictor is deemed statistically significant, Clinical
Tumour Stage. The other predictors all show p-values higher than 0.05 and are not
included.

Now we shall select an appropriate feature selection strategy by comparing the two.
3 models are used to compare the classification performance without and with the
corresponding feature selection strategy applied. Given in Figure-3.14, are the relative
performance of the ML models with and without Univariate Feature Selection applied
to the data.

With Univariate Feature Selection, we observe a downward trend in the difference
in performance before and after feature selection. Only in the SVM, do we see that the
performances are similar but the variability has increased.

3.3.2 Recursive Feature Elimination

As discussed in Section-2, RFE is a Wrapper method that uses the feature importance
measure of a machine learning model to rank predictors and iteratively eliminate them.



3.3 FEATURE SELECTION 28

Feature Importance using the Chi Sq test between each predictor and response
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Figure 3.13: Barplot of the Chi-Squared test p-values for each categorical pre-
dictor. The red line denotes the cut-off at 5%.
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Figure 3.14: LR, RF and SVM compared with and without Univariate Feature
Selection.
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Here, we shall be using RFE with 3 of our models, namely, Logistic Regression, Random
Forest and SVM. RFE is conducted with 5-fold Cross Validation to optimise the number
of features. Then, the model is fitted on this optimal subset of features. Figure-3.15
indicate the relative performance of the ML models with and without Recursive Feature
Elimination applied to the data.

In Figure-3.15, we notice an upward trend in performance. There is a slight decrease
in variability and an improvement in performance in all models. Due to superior
performance, we shall select RFE as the feature selection technique of choice.

3.4 Modelling

After exploring our data and relevant feature selection methods, our data is now ready for
modelling. We shall be evaluating a range of different machine learning methods namely,
Logistic Regression, Random Forest, Support Vector Machine and Neural Networks. All
the models discussed here are fit using Nested Cross Validation, a resampling framework
that allows hyperparameter tuning as part of the model itself. The data is transformed
according to the requirements of the model and the resampling procedure is performed
to yield an unbiased estimate of model performance.

3.4.1 Logistic Regression

To fit the requirements of Logistic Regression, the data is dummy encoded (one-hot
encoded) so the categorical variables are split into multiple dummy variables. Each
dummy variable now contains only 2 levels, 0 or 1.

As discussed in Section 2, Nested Cross Validation has two loops, the inner and
outer loop. The inner loop has been configured with a pipeline that performs Recursive
Feature Elimination and passes the data with the best features to the Logistic Regression
model. The outer loop is configured to run 5-Fold Cross validation and the inner loop
runs 3-Fold Cross Validation. Nested Cross validation is then repeated 5 times and the
results are plotted in Figure-3.16. LR gives a mean ROC AUC of 0.7829.

3.4.2 Random Forest

Random Forests being a tree-based method, do not require any data scaling. However,
the categorical variables are encoded to have numbers instead of text labels.

We set up the inner loop by performing Recursive Feature Elimination followed by
a hyperparameter search. The parameter space that was searched through has been
listed below.

1. Number of trees: 50, 100 and 200

2. MaxDepth: 1,2 and 3
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0.95

0.90 1

0.85 1

0.80 4

ROC AUC

0.75

0.70 1

0.65

Before FS After FS

Comparison of RF before and after RFE

0.90 1

0.85 1

0.80 A

ROC AUC

0.75 A

0.65

Before FS After FS

Comparison of SVM before and after RFE

ROC AUC

Before FS After FS

Figure 3.15: LR, RF and SVM compared with and without Recursive Feature
Elimination.
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Logistic Regression 5-Fold Nested CV - ROC AUC

0.90 1

0.85 1

0.80 4

0.75 1

0.70 4

0.65 1

Figure 3.16: Performance of LR using Nested Cross Validation.

3. Max Num of Features: 3, 4, 5 and 6

The outer loop is configured with 5-Fold Cross Validation and the inner loop runs 3-
Fold Cross Validation. The procedure is not repeated multiple times due to performance
constraints. The results are displayed in Figure-3.17. RF gives a mean ROC AUC of
0.7640.

3.4.3 Support Vector Machine

Support Vector Machines rely on a distance metric to classify data points and hence
require the data to be scaled. For the numeric predictors, we subtract the mean value
and scale to unit variance. We also transform each predictor to be between 0 and 1 so
they are all on the same scale. The categorical variables are dummy encoded with each
new predictor having 0 or 1 as possible levels.

The inner loop consists of Recursive Feature Elimination followed by a hyperpa-
rameter search. The SVM was configured with a linear kernel and hence only the
regularisation parameter was searched with possible values being 0.1, 1, 10 or 100. The
outer loop is configured with 5-Fold Cross Validation and the inner loop runs 3-Fold
Cross Validation. The procedure is repeated 5 times and the results are displayed in
Figure-3.18. SVM gives a mean ROC AUC of 0.7416.

3.4.4 Neural Networks

Similar to Support Vector Machines, Neural Networks also require the data to be scaled
and the same data transformation pipeline is applied.
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Random Forest 5-Fold Nested CV - ROC AUC
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Figure 3.17: Performance of RF using Nested Cross Validation.

Linear SVM 5-Fold Nested CV - ROC AUC
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Figure 3.18: Performance of SVM using Nested Cross Validation.
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A Multi-layer perceptron Network has two important hyperparameters to be op-
timised. The size and the learning rate. The following parameter space was searched
during the hyperparameter search

1. Hidden Layer Sizes: All possible combinations from one hidden layer to 4 hidden
layers with the number of neurons 10, 20, 50 and 70.

2. Learning rate (alpha): 0.0001, 0.001 and 0.01.

Neural Network 5-Fold Nested CV - ROC AUC

0.800 A

0.775 A

0.750 A

0.725 A

0.700 -

0.675 A

0.650 A

Figure 3.19: Performance of NN using Nested Cross Validation.

The inner loop consists of a step for tuning the Multi-layer Perceptron without RFE.
The outer loop is configured with 5-Fold Cross Validation and the inner loop runs 3-Fold
Cross Validation. The procedure is not repeated due to performance constraints. The
results have been displayed in Figure-3.19. The MLP model gives a mean ROC AUC of
0.7370.



Chapter 4

Results

In the previous chapter we started off by cleaning the data. Then, we explored the data
to understand its key characteristics. We also weighed two feature selection methods,
namely Univariate Feature Selection and Recursive Feature Elimination. All of these
steps culminated in the final step, modelling. This is where we evaluated all our Machine
Learning Methods and got measures of their performance. In this chapter we shall look
at the results from the modelling stage and interpret them.

4.1 Model Selection

After the modelling stage, it is important that we are able to select an appropriate model
for our purpose. Due to the Nested Cross Validation framework used for evaluating
each model, we were able to obtain an unbiased estimate of model performance by not
allowing any single model to overfit and train it on different sections of our data. The
results obtained from this model comparison are displayed in Figure-4.1 and Figure-4.2.

Comparison Of All Models - ROC AUC

ROC AUC
=)
-~
v

LR RF L-SVvM NN

Figure 4.1: Performance of 4 Machine Learning Models (ROC AUC).
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Figure 4.2: Performance of 4 Machine Learning Models (Accuracy).

We observe in both figures that Logistic Regression has the best performance closely
followed by Random Forest. It is worth noting that interestingly, the most interpretable
models have scored the highest. We shall select the two best performing models, Logistic

Regression and Random Forest and interpret them.

4.1.1 Logistic Regression

In order to run this model on the entire dataset, we must repeat the inner loop of nested
cross validation. We fit a pipeline of RFE and Logistic Regression using 5-Fold Cross
Validation to find the features to be selected for the final model. llustrated in Figure-4.3
is a plot used to identify the optimal number of features to be included in the final
model. The data used to train this model has been dummy encoded and hence has a
larger number of features than the original data.
The best 9 features identified are as follows,

1.

2.

BxGG1

BxGG2

Race_Black Hispanic
ClinT_Stage_T2A
RP_Type_SALVRP
Copy-number Cluster_2
Copy-number Cluster_5

Copy-number Cluster_6

Copy-number Cluster_flat
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Logistic Regression RFE - Optimal no. of features: 9
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Figure 4.3: Logistic Regression Performance during RFE.

The next step is to fit a Logistic Regression model with the features above. The fit
model is given in Table-4.1.1.

We shall interpret the coefficients deemed to be statistically significant (p-value <
0.05).

BxGG2: For a 1-unit increase in Secondary Biopsy Gleason Score, the chances of a
patient having an aggressive disease (Tumour of Pathological Grade Gleason Score 7
or higher) increases by (OR = e!4729 = 4 361) 336%. The effect is significant (p-value =
0.0026)

ClinT_StageT2A: Patients with Clinical State T2A are more likely than patients with
Clinical stage T1C to have an aggressive disease by (OR = e(1.8686) = 6.479) 548%. The
effect is significant (p-value = 0.0086).

Copy Number Cluster 2: Patients with a Copy number cluster assignment 2 are less
likely than patients with a Copy number cluster assignment 1 to have an aggressive
disease by (OR = e~16%48 = 0.2009) 80%. The effect is significant (p-value = 0.0467).

4.1.2 Random Forest

We rerun the inner procedure of Nested Cross Validation for Random Forest as well. We
fit a pipeline of RFE and Random Forest using 5-Fold Cross Validation to get a subset of
optimal features. Figure-4.4 describes the performance of Random Forest during RFE,
referring which we select 7 features. The optimal features for Random Forest are,

1. PreDxBxPSA
2. DxAge

3. BxGGl1
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Predictor Coefficient Estimate | Pr(>|z|)
(Intercept) -168.8887 0.98791
RaceBlack Hispanic 50 0.99689
RaceBlack Non Hispanic | 28.9185 0.99054
RaceUnknown 29.7599 0.99026
RaceWhite Hispanic 4.2356 0.99981
RaceWhite Non Hispanic | 28.6691 0.99062
BxGG1 45.3647 0.98806
BxGG2 1.4729 0.0026

ClinT_StageT2 -25.4804 0.99887
ClinT_StageT2A 1.8686 0.00868
ClinT_StageT2B 0.458 0.41376
ClinT_StageT2C -0.6582 0.44147
ClinT_StageT3 -3.2336 0.99985
ClinT_StageT3A 12.5506 0.99382
ClinT_StageT3B -24.9598 0.99889
ClinT_StageT3C -45.1233 0.99803
RP_TypeRP 0.5206 0.30029
RP_TypeSALVRP 17.8459 0.99831
Copy.number.Cluster2 -1.6048 0.04677
Copy.number.Cluster3 -0.7102 0.43105
Copy.number.Cluster4 -0.4042 0.64859
Copy.number.Cluster5 16.5652 0.99621
Copy.number.Cluster6 0.9438 0.39751
Copy.number.Clusterflat | -1.5976 0.07073

Residual deviance: 141.88 on 166 degrees of freedom

Table 4.1: Logistic Regression Model Coefficients
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4. BxGG2
5. ClinT_Stage
6. Copy-number Cluster

7. ERG-fusion aCGH

Random Forest RFE - Optimal no. of features: 7
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Figure 4.4: Random Forest Performance during RFE

Now that the optimal features have been found by RFE, we shall fit the Random
Forest with the parameters optimised during this Cross Validation procedure and fit it on
the entire dataset. Figure-4.5 plots the relative importance measures. This importance
is calculated internally during the fitting of the Random Forest and is called the Gini
Importance or the Mean Decrease in Impurity.

4.2 Discussion

In the previous section we identified Logistic Regression and Random Forest as the two
best models. For the Logistic Regression model, we selected 9 optimal features which
included dummy variables. We selected the 6 original features that were represented
by these dummy variables, fit the LR model and interpreted the model coefficients. We
observe that three of these coefficients are statistically significant. The Random Forest
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Figure 4.5: Random Forest Feature Importance
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model was also evaluated in the same way as above, where RFE was run to select the
best 7 features. The model was then fitted using these features on the entire dataset and
the feature importance plots were visualised. The PSA level at diagnosis and Primary
Biopsy Gleason Score are the two most important features.

The performance measures of Logistic Regression and Random Forest are found
to be very competitive. Since we need to select a model for medical purposes, we will
select the one with a smaller subset of features and lesser computational power required.
Logistic Regression fulfills both these requirements and will be the model of choice.



Chapter 5

Conclusion

In this work we used the MSKCC prostate cancer dataset to predict the Pathological
Grade of a tumour. Bearing in mind that the pathological grade is measured during
surgery, we completed suitable steps to remove information that is recorded after the
surgery. We also removed predictors with many missing values and/or provided inade-
quate information and got a cleaned version of the dataset.

Data Exploration was a key part of our analysis where we understood every predictor
and their respective contribution. Most importantly we visualised the distribution of
our response variable, Pathological Gleason Score, and decided to combine the scores
7’,’8" and ’'9’ into one class called as '7+’. This new class indicates that the patient has
an aggressive disease. We weighed two Feature Selection techniques and selected RFE
for its superior performance. During the modelling stage we compared four Machine
Learning Models, Logistic Regression, Random Forest, Support Vector Machine and
Neural Network. All four of them were fit using Nested Cross Validation to get an
estimate of their performance. We assessed that among the four, Logistic Regression
and Random Forest performed the best and selected them for interpretation. We found
the optimal features for both of the models and fit them on the complete dataset. Finally,
we selected the Logistic Regression model to be the model of choice with the features,
Primary Biopsy Gleason Score, Secondary Biopsy Gleason Score, Race, Clinical Tumour
Stage, Radical Prostatectomy Type and Copy Number Cluster Assignment as the key
biomarkers.

5.1 Limitations and Future Work

Here we shall discuss the limitations and possible future steps that could be taken to
extend this work. One of the major limitations is that some of the features in the dataset
were moderately imbalanced, such as Race, Sample Type, and the Pathological Gleason
Score. Oversampling techniques could be explored in the future that may mitigate
this issue. Techniques such as SMOTE (Synthetic Minority Oversampling Technique)
[Chawla et al. 2002] have been used in recent literature [Abraham, and Nair 2018; Min
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et al. 2019; Hamzeh et al. 2020].

In the final Logistic Regression model, we find that only 3 explanatory variables are
statistically significant. Further diagnostic tests could be conducted to assess the model
and steps could be taken to improve the model. Another major limitation is that the
dataset was very small. Future work could include collecting a larger and more diverse
dataset and hence extending this study.
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